
Parts 2 and 3 presented principles and methods for analyzing and synthesizing architecture. 
Because of the complexity inherent in architecture, many of the steps involved in analysis and 
synthesis are difficult to conduct exhaustively. For example, we considered only seven con-
cepts for the Hybrid Car in Chapter 12, and we did not exhaustively search the space of concept 
fragment combinations. Although some aspects of these tasks can be reduced to computation, 
great care must be taken when distilling the outputs of computational models to yield recom-
mendations. With these thoughts in mind, in Part 4 we embark on architectural decision support, 
where we will investigate how methods and tools can support, but not replace, the role of the 
architect.

Part 4 will introduce computational methods and tools that can be useful to the system 
architect. These are taken from the fields of decision analysis, global optimization, and data 
mining.

Our intentions are twofold. On the one hand, methods and tools can augment the archi-
tect’s analysis, helping to reduce ambiguity, employ structured creativity, and manage complex-
ity. However, the second purpose of Part 4 is to create mental models for the reader (such as the 
tradespace mental model). It has been our experience that some of the constructs and modes of 
reasoning presented in this part are useful for supporting architectural decisions, even without 
actually building analytic models.

Part 4 is organized as follows. In Chapter 14, we illustrate the system-architecting process as 
a decision-making process. We provide an overview of decision support, with an eye to restrict-
ing the field of view to the correct subset of decisions. In theory, every stroke of the painter’s 
brush is a decision, but not all decisions are architectural decisions. We illustrate these ideas 
with a simple case study of the Apollo mission-mode decision, to demonstrate the power of these 
methods and tools.

In Chapter 15 we examine how to synthesize information from an architecture tradespace—
that is, the result of evaluating a set of architectures. We discuss how to combine tools such as 
Pareto analysis, design of experiments, and sensitivity analysis to gain a better understanding 
of the main architectural tradeoffs, sensitivities, and couplings between decisions. In particular, 
we explore how to structure a complex architectural tradespace around a hierarchy of decisions. 
We will argue that developing the hierarchy of decisions is a key lever on managing complexity, 
and that knowing which decisions have the greatest impact is at least as important as finding the 
model’s prediction of the best architecture.

Architecture as Decisions
Part 4 
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In Chapter 16, we show how to encode architectural decisions in a model that can be used by 
a computer to automatically generate and explore a tradespace. We start by introducing the idea 
of system architecting problems and the canonical types of decisions that the architect makes. 
Based on this study, we propose six patterns of architectural decisions, and we introduce their 
corresponding formulation as optimization problems. We look at the mathematical structure of 
these problems and discuss similarities to, and differences from, classical optimization problems 
(knapsack problem, traveling salesman problem). A single class of tools—heuristic optimization 
algorithms—is introduced as an approach to solving architectural problems computationally.

The appendices describe additional tools that can be used to support the main functions of 
decision support (representing, simulating, structuring, and viewing). In particular, we discuss 
in the appendices how to automatically enumerate and evaluate architectures using rule-based 
systems, and how to structure the tradespace using clustering algorithms.
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14.1 Introduction

The job of a system architect is to transform a set of needs and goals into a system architecture. 
For complex systems, the task of architecting is challenging, because the complex relationships 
between design parameters and their alternatives introduce a massive search space that challenges 
both humans’ and computers’ abilities to exhaustively process the space. This chapter argues that 
a system architecture can be effectively represented as a set of interconnected decisions. It should 
be no surprise that we consider these decisions as a system—they have entities (the decisions) 
and relationships (the connections between the decisions). These decisions are an intermediate 
system, between the system of needs and the final architecture. Most important, these decisions 
can be used both cognitively and computationally to reduce the perceived complexity of the archi-
tecting task.

Let’s start with an example. Consider the process of architecting the Apollo project of the 
1960s. In his famous May 1961 speech, President Kennedy stated that the United States would 
send a man to the Moon and return him safely to Earth by the end of the decade. [1] This and 
other needs and goals were then transformed into an architecture for the system. System archi-
tects achieved this transformation by identifying, and making decisions to reduce, the candidate 
space of architectures.

NASA reduced the perceived complexity of the tradespace by identifying key decisions that 
would define the mission-mode, which described how and where the various elements would 
meet in space and how the crew would shift between elements. Historical evidence [2] shows 
that progress in the Apollo program was limited until June 1962, when the decision was made to 
choose Lunar Orbit Rendezvous as the Apollo mission-mode, setting the program on a path to 
the successful Moon landing in 1969. [3]

There are two major decisions in this architecture: Will there be rendezvous and docking 
operations in Earth orbit (called Earth orbit rendezvous, or EOR)? And will there be rendezvous 
and docking operations in lunar orbit (called lunar orbit rendezvous, or LOR)? If there is neither 
EOR nor LOR, it is called the direct mission-mode, and a single huge spacecraft is launched into 
Earth orbit, travels to Moon orbit, descends on the Moon’s surface, ascends into Moon orbit, and 

Chapter 14
System Architecture as a Decision-Making 
Process
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returns to Earth. This option minimizes the number of vehicles developed. In the LOR mode, two 
spacecraft are injected into lunar orbit, and only one descends to the Moon. After completing the 
mission on the Moon’s surface, it ascends and is assembled with the second vehicle that carries 
the propellant required to return to Earth. This option is the most fuel efficient. Finally, in the 
EOR mission-mode, two spacecraft are assembled in Earth orbit and then travel to the surface 
of the Moon. This option is preferable from a risk standpoint, because the riskiest operation (the 
assembly of spacecraft) occurs near Earth, which greatly facilitates the return of the astronauts in 
case of failure. A fourth mission-mode includes both EOR and LOR.

The mission-mode involving lunar orbit rendezvous (LOR) was chosen for the Apollo mis-
sion. By making this decision, the system architects provided design engineers with a stable 
category of acceptable designs that were eventually refined into a single detailed design.

In this chapter, we present the notion of system architecting as a decision-making process—
a perspective that can dramatically change how early design activities are conducted. In the 
introduction to this text, we highlighted the idea that the first ten decisions taken in an architec-
ture determine a majority of the performance and cost. Even with only two choices per decision, 
there are 210 = 1024 possible architectures in this design space. Much of what we discussed in 
Parts 1 through 3 of this text helps system architects apply experience and heuristics to winnow 
this space. In this chapter we will show how typical decision support tools, such as decision 
trees, can make it easier to comb through large combinatorial spaces and help the architect to 
make informed choices. It goes without saying that this is not intended to replace the judg-
ment of the architect, but to augment it. We seek to develop a set of methods and tools that are 
primarily aimed at reducing complexity but can also help in resolving ambiguity and thinking 
creatively. In other words, we are trying to optimize the functional allocation between humans 
and computers in the system architecting task.

14.2 Formulating the Apollo Architecture Decision Problem
Heuristics for Decisions

Formulating the Apollo project as a decision-making problem requires selecting a set of deci-
sions (with their corresponding alternatives) and a set of metrics. This section describes three 
heuristics for formulating decisions and shows how they are applied to the Apollo architecture 
problem.

The first heuristic for formulating the decision problem is to carefully set the boundaries of 
the architectural space under consideration (see Principle of the System Problem Statement in 
Chapter 11). What range of architectures should be included in the Apollo analysis? The highest-
level specification of the Apollo system can be derived from President Kennedy’s 1961 speech: 
“landing a man on the Moon and returning him safely to the Earth.” This statement sets as the 
minimum scope that Apollo should land at least one man on the Moon. But architectures that 
extend to a much larger scope of issues (Mars exploration, space stations, and so on) may not 
have been appropriate, considering the limited schedule NASA was given.

One decision that NASA faced was the size of the crew. In the early 1960s, landing even one 
man on the Moon was an extremely ambitious goal. [4] However, because a lunar mission is a 
relatively long and complex space mission, it may have been too risky to send a lone astronaut 
on the voyage. Again considering schedule constraints, it was probably inappropriate to consider 
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missions with large teams of astronauts, such as von Braun’s proposed Conquest of the Moon. [5] 
In this retrospective analysis, we will bound the number of crew members to at least one and no 
more than three.

Another decision was that of the mission-mode. The feasibility and reliability of in-space 
rendezvous and docking was a heavily debated topic at the beginning of the Apollo project. 
Earth orbit rendezvous was considered of lower technical risk but also of lower benefit. John C. 
Houbolt, a NASA engineer, showed that lunar orbit rendezvous was challenging but technically 
feasible. He argued that missions including rendezvous and docking in lunar orbit should be 
considered, because they provided opportunities for saving mass and launch cost. [6] Therefore, 
in this retrospective analysis we will consider both EOR and LOR.

The second heuristic states that the decisions should significantly influence the metrics 
by which the architecture is evaluated. This seems obvious, but when architecture decision 
models are created, some of the decisions are often found to have low impact on the metrics 
(that is, the metrics are relatively insensitive to these decisions), implying that these decisions 
could be dropped. Two metrics that are considered important in space missions are the total 
mass of the mission elements and the probability of mission success. Both strongly depend 
on the mission-mode and the crew size, as well as on the fuel types to be used for spacecraft 
maneuvers. [7]

The third heuristic states that the decision model should include only architectural 
decisions. For Apollo, decisions related to the mission-mode directly drive the function-to-
form mapping. For example, if the mission-mode includes lunar orbit rendezvous, the concept 
for the mission includes two vehicles: one crew vehicle that has a heat shield so that it can 
re-enter Earth’s atmosphere, and a lunar lander vehicle that is specialized for descent to the 
surface of the Moon. Sometimes decisions indirectly influence architecture. For example, the 
fuel types influence the kind of engine used and the requirements for propellant tanks. The 
application of this third heuristic led to the removal of some decisions from our model; these 
include the decision on the location of the launch site, which does not substantially change the 
architecture.

Apollo Decisions

After considering the three heuristics, we selected a set of nine decisions for the Apollo study 
(see Figure 14.1). The process of creating a decision model is iterative in nature. For example, if 
a model shows that architectures that differ only in Decision X produce the same metric scores, 
then either Decision X can be eliminated from the model, or a new metric should be included that 
reflects the effect of this decision on metrics.

The set of nine decisions shown in Figure 14.1 includes decisions related to the mission-
mode, the crew size, and the rocket propellant type used for Apollo. The figure also shows the 
range of allowed alternatives for each decision. Such tables are called morphological matrices, 
and in Section 14.5 we will discuss them as a tool to organize architectural decisions.

The first five decisions listed and illustrated in Figure 14.1 are related to the mission-
mode: EOR (Will there be rendezvous and docking in Earth orbit?); earthLaunch (Will the 
vehicles go into orbit around the Earth or launch directly to the Moon?); LOR (Will there 
be rendezvous and docking in lunar orbit?); moonArrival (Upon arrival, will the vehicles go 
into orbit around the Moon or descend directly to the Moon’s surface?); and moonDeparture  
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(Upon ascent, will the vehicles go into lunar orbit or proceed directly toward the Earth?). All five 
of these decisions indicate alternative maneuvers at different points of the mission. By combin-
ing one alternative from each of the five decisions, a mission-mode can be defined.

The four remaining decisions are related to crew size and fuel type. The choice from cmCrew 
sets the size of the Command Module crew, and lmCrew includes the choices for the size of the 
Lunar Module crew (which of course is zero if there is no lunar module). The choices for smFuel 
and lmFuel set the fuel of the Service Module and the Lunar Module (NA if it does not exist). 
“Cryogenic” indicates a higher-energy LOX/LH2 propellant, and “storable” represents a lower-
energy but higher-reliability hypergolic propellant.

Constraints and Metrics

In addition to defining the decisions, a complete description of the architecture model con-
tains constraints and metrics. The constraints capture available knowledge about the system 
and the relationships between the decisions. Logical constraints are those that identify com-
binations of decisions that are not possible. Table 14.1 shows the logical constraints in the 
Apollo example. For instance, constraint d says that the Lunar Module crew must be smaller 
than or equal to the Command Module crew—you cannot create astronauts in the vicinity of 
the Moon!

Earth

shortID Decision units alt A alt B alt C alt D 

Moon

earthLaunch
{orbit, direct}

moonDeparture
{orbit, direct}

moonArrival
{orbit, direct}

LOR
{no, yes}

EOR
{no, yes}

EOR

earthLaunch

LOR

moonArrival

moonDeparture

cmCrew

smFuel

lmFuel

lmCrew

Earth Orbit Rendezvous

Earth Launch Type

Lunar Orbit Rendezvous

Arrival At Moon

Departure From Moon

Command Module Crew

Lunar Module Crew

Service Module Fuel

Lunar Module Fuel

none no yes

yes

direct

direct

direct

3

321

cryogenic

cryogenic

storable

storable

no

2

0

NA

orbit

orbit

orbit

none

none

none

none

none

none

people

people

Figure 14.1   Mapping of historical Apollo mission-modes to the nine decisions. Note that the 

combinations of decision assignments listed must also satisfy the logical constraints shown in 

Figure 14.2.
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Table 14.1 shows that the key decision is LOR. If it is yes, there cannot be direct descent at 
lunar arrival or direct lunar departure (constraints b and c), and there must be a Lunar Module 
with a crew of at least 1 and a propellant (constraints e and f).

There are also weaker forms of “reasonableness constraints” that encode things you would 
probably not do together. For example, if you were to construct an international effort to go to 
the Moon, you would probably not have the United States build a lander, and a second nation 
also build one. That would be wasteful of resources and hence unreasonable. But there is nothing 
logically incorrect about it.

In assessing the effectiveness of architectures, we usually find that there are metrics that 
quantify some measures of performance, some measures of cost, and some measures of devel-
opmental and operational risk. Our Apollo case is iso-performance, which means that all archi-
tectures provide for landing at least one crew on the lunar surface, satisfying Kennedy’s goal. 
Therefore, the two metrics that we use in assessing the potential success of the Apollo project 
are (1) operational risk and (2) initial mass to low Earth orbit (IMLEO), a proxy for cost. The 
IMLEO is calculated for any architecture using the rocket equation [8] and the parameters taken 
from Houbolt’s original documents. [9]

The risk metric was based on Table 14.2, which directly links decisions with the probability 
of successful operation. The overall probability of success is obtained by multiplying the individ-
ual probabilities together for the operations represented in any one architecture. The risks metric 
contains four categories of risk: high (0.9 probability of success), medium (0.95), low (0.98), and 
very low (0.99). The risk factor for each operation is assessed on the basis of documents written 
in the early 1960s and interviews with key decision makers.

Metrics are another way in which decisions can be linked to each other. For example, the 
probability of mission success is computed by multiplying all individual probabilities. Thus each 
decision is linked through this metric to all other decisions.

Computed Apollo Architecture

Figure 14.2 shows the results of possible architectures for the Apollo program, which were 
obtained by exhaustively calculating the outcomes (IMLEO and probability of mission success) for 
all combinations of decisions that are not logically constrained. Among the best solutions closest 

Table 14.1  |  Constraints in the Apollo example

Id Name Scope Equation

a EORconstraint EOR, earthLaunch (EOR == yes && earthLaunch == orbit) || (EOR == no)

b LORconstraint LOR< moonArrival (LOR == yes && moonArrival == orbit) || (LOR == no)

c moonLeaving LOR,  
moonDeparture

(LOR == yes && moonDeparture == orbit) ||  
(LOR == no)

d lmcmcrew cmCrew, lmCrew (cmCrew ≥ lmCrew)

e lmexists LOR, lmCrew (LOR == no && lmCrew == 0) || (LOR == yes &&  
lmCrew > 0)

f lmFuelConstraint LOR, lmFuel (LOR == no && lmFuel == NA) || (LOR == yes &&  
lmFuel ! = NA)
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to the Utopia point (low mass and high probability of success, identified with the “U” symbol in 
Figure 14.2), we’ve highlighted eight architectures. What is remarkable is that these eight mirror 
the three main proposals considered at the time: von Braun’s Direct mission, Houbolt’s LOR con-
cept, and the Soviet mission design.

Point designs 1 and 2 are “direct” missions with three and two crew members, respectively. 
A direct mission-mode implies that the mission has neither lunar orbit rendezvous nor Earth 
orbit rendezvous, and no lunar module. These types of missions were among the ones initially 
proposed by von Braun. [10] They have high mission reliability, at the cost of very high IMLEO.

Point designs 3 to 8 are architectures that include lunar orbit rendezvous maneuvers. 
Point design 3 matches the actual configuration of Apollo: It has three crew members in the 

Table 14.2  |  �Table used to compute the risk metric in the Apollo example 

with the probability shown in brackets below each alternative.

shortID Decision alt A alt B alt C alt D

EOR Earth Orbit 
Rendezvous

no yes

risk (0.98) (0.95)

earthLaunch Earth Launch  
Type

orbit direct

risk (0.99) (0.9)

LOR Lunar Orbit 
Rendezvous

no yes

risk (1) (0.95)

moonArrival Arrival   
at Moon

orbit direct

risk (0.99) (0.95)

moon 
Departure

Departure  
from Moon

orbit direct

risk (0.9) (0.9)

cmCrew Command  
Module Crew

2 3

risk (1) (1)

lmCrew Lunar Module 
Crew

0 1 2 3

risk (1) (0.9) 1 1

smFuel Service  
Module Fuel

cryogenic storable

risk (0.95)^(burns) (1)

lmFuel Lunar Module  
Fuel

NA cryogenic storable

risk (1) (0.9025) 1
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Figure 14.2   Apollo tradespace plot comparing IMLEO to probability of mission success. Each point in 

the plot indicates a logically feasible combination of decision assignments. The dashed line indicates 

the best architectures. The “U” symbol indicates the Utopia point, an imaginary point with perfect 

scores for all metrics.

command module, has two crew members in the lunar module, and uses storable propellants 
for both the service module and the lunar module. [11] It represents a reasonable compromise 
between mass and risk. Point 8, which is the minimum-mass configuration, uses two crew 
members in a command module and one crew member in a lander with cryogenic propel-
lants. Point design 8 is the point that most closely models the proposed Soviet lunar mission’s 
architecture. [12] Searching computationally through the possible architectures, we surface 
the three primary choices considered during the mission-mode decision process in the 1960s, 
and we come to understand the essential tradeoff between mass and risk. We will see in the 
next chapter how to mine this type of chart for useful information that can help us structure the 
system architecture process.

14.3 Decisions and Decision Support

According to R. Hoffman, the word “decide” comes from the Sanskrit word khid 'ati, meaning “to 
tear,” the Latin word cædare, meaning “to kill” or “cut down,” and also the Latin word decædare, 
which means “to cut through thoroughly.” [13] In contemporary English, a decision is “the passing 
of judgment on an issue under consideration” [14] or a purposeful selection from mutually exclu-
sive alternatives. Decision making is “goal-directed behavior in the presence of options” [15] that 
culminates in one or more decisions. The key ideas in decision making are that there is a situation 
with multiple alternatives; a selection is made that separates the solution space; and there is some 
expected benefit that will be achieved by making this decision.
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Decision support is about assisting decision makers in making a decision. Many decision 
support processes can be described by Herbert Simon’s four-phase process, [16] which includes:

1.	 Intelligence Activity: “Searching the environment for conditions calling for a decision.”
2.	 Design Activity: “Inventing, developing, and analyzing possible courses of action.”
3.	 Choice Activity: “Selecting a particular course of action from those available.”
4.	 Review Activity: “Assessing past choices.”

According to Simon, decision makers tend to spend a large fraction of their resources in the 
Intelligence Activity phase, an even greater fraction of their resources in the Design Activity phase, 
and small fractions of their resources in the Choice Activity phase and the Review Activity phase.

Simon’s research makes the complementary observation that there are two “polar” types of 
decisions: programmed decisions and non-programmed decisions (these have sometimes been 
called “structured” and “unstructured” decision problems by subsequent authors [17]). Examples 
and characteristics of these two types of decisions are shown in Figure 14.3.

Programmed decisions are “repetitive and routine decisions” where a procedure for making 
decisions for this type of problem has been worked out a priori. Examples of programmed 
decisions range from simple to very complex. For instance, deciding how much to tip a waiter, 
deciding the optimal gains of a control system, and deciding the routing of all aircraft flying over 
the United States can all be considered programmed decisions. In each case there is a known 

Size of aircraft to
build?

Which controller design
for a plant with

well-understood dynamics?

Which office
supplies to order?

Which mission-mode for
human Mars missions?

Which new products
should be developed?

Operations research Management science

Decisions in engineering design Decisions in system architecting

What is the optimal
market strategy for our
established products?

What is our market
strategy for our novel,

new products?

Non-programmed decisionsProgrammed decisions

Should the nation
go to war?

What is the optimal
manufacturing configuration

for the factory?

Characteristics:
Non-routine, weakly defined, significant 
impact (usually), solved by heuristic search 
or general problem solving methods. Models 
of the system are imprecise.

Characteristics:
Routine, well-defined, can be modeled and 
optimized precisely, not a novel problem, 
can be solved by an established procedure.

Figure 14.3   The spectrum of decisions: Programmed vs. non-programmed decisions.
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and defined approach that a decision maker can follow to arrive at a satisfactory choice. Models 
exist for the behavior of the problem, and the objectives are clearly definable. Note that classify-
ing a decision as programmed does not imply that it is an “easy” decision, but only means that 
a method to solve it is known and available. Furthermore, the classification “programmed” does 
not quantify the amount of resources necessary to use the prepared methodology. For many engi-
neering problems, this predetermined routine will be difficult to implement or expensive to com-
pute. [18] Simon considers programmed decisions to lie in the domain of Operations Research.

On the other end of the spectrum are non-programmed decisions. These decisions are novel, 
ill-structured, and often consequential. An example is the decision of the mission-mode for Apollo. 
Simon maintains that non-programmed decisions are generally solved by creativity, judgment, 
rules of thumb, and general problem-solving methods such as heuristics. The examples given in 
Figure 14.3 include deciding whether a nation should go to war, deciding what market strategy to 
adopt for new, unproven products, and deciding on the mission-mode for human Mars missions. 
Simon considers non-programmed decisions to lie in the domain of management science.

In many cases, decisions that have been thought to be non-programmed become pro-
grammed once someone is clever enough to invent a programmed method to solve that prob-
lem. Perhaps a better name for non-programmed decisions is “not-yet-programmed decisions.” 
An example of people becoming able to systematically program a previously non-programmed 
problem occurred when Christopher Alexander introduced the concept of “pattern language” as 
a systematic way to develop civil architectures. The pattern language catalogs the elements of an 
architecture as reusable triples made up of the context in which they are relevant, the problem 
they are intended to solve, and the solution they provide. [19] We will discuss the notion of pat-
terns further in Chapter 16.

It is evident that there is sometimes an opportunity to “program” decisions that were previ-
ously thought to be “non-programmed.” The goal of the remainder of this chapter and the next 
is to develop a decision support system to comprehensively and efficiently examine a solution 
space using rigorous analysis as suggested by Simon, rather than using heuristics.

14.4 Four Main Tasks of Decision Support Systems

Decision support consists of assisting decision makers in making a decision. Today, many 
commercial software programs (such as Decision Lens®, TreePlan®, and Logical Decisions®) 
provide decision support systems by implementing some form of automation to support the 
decision-making process.* The goal of these systems is to enhance the efficiency of decision 
makers by providing tools to quantitatively and qualitatively explore a space of alternatives for 
single or multiple decisions.

In constructing a decision support system (DSS) for architecture, it is useful to character-
ize the tasks. We assert that the task of Simon’s Design Activity applied to architecture can be 
described by four “layers”: representing, structuring, simulating, and viewing [20]:

•	 The representing layer includes methods and tools for representing the problem for 
the human decision maker and encoding the problem for computation. The matrix 

*�The Institute for Operations Research and the Management Sciences (INFORMS) maintains a list of decision analysis 
software at its website. http://www.orms-today.org/surveys/das/das.html
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in Figure 14.1, showing the choices for each Apollo decision, is an example of 
representing. This morphological matrix is useful because it provides a simple 
representation of the decisions and choices to be considered. However, it does not 
provide any information related to constraints (in the structuring layer) or preferences 
(in the simulating layer). Other ways of representing architectural spaces include 
trees, graphs, OPM, and SysML.

•	 The structuring layer involves reasoning about the structure of the decision problem 
itself. This includes determining the order of decisions and the degree of connectivity 
between decisions. For example, in the Apollo example, one cannot choose to have 
an Earth Orbit Rendezvous and simultaneously choose to launch directly to the Moon 
(see Table 14.1). This type of logical constraint, and other types of couplings between 
decisions, can be represented using Design Structure Matrices (DSMs) containing 
bilateral interactions between decisions. DSMs are described in more detail in the 
next section.

•	 The simulating layer is used to determine which combinations of decisions will sat-
isfy logical constraints and calculate the metrics. The simulating layer is thus about 
evaluating the ability of a system architecture to satisfy the needs of the stakeholders. 
For example, in the Apollo example, the simulating layer computes the two metrics 
shown in Figure 14.2. A variety of tools are used for system simulation, ranging in 
complexity from simple equations to discrete-event simulation. [21]

•	 The viewing layer presents, in a human-understandable format, decision support 
information derived from the structuring and simulating layers. For example, the chart 
shown in Figure 14.2 provides some viewing support by graphically representing 
the evaluation results from all the architectures in the tradespace. We will discuss 
tradespaces and how to mine information from them in detail in Chapter 15.

Note that we include in Simon’s Design Activity the methods and tools that involve repre-
senting, structuring, simulating, and viewing. The actual architecture selection process is the 
goal of Simon’s Choice Activity, and the steps leading to this Choice Activity are discussed in 
Chapter 16.

14.5 Basic Decision Support Tools

We have already seen, in Parts 2 and 3, examples of tools that are useful in some of the four 
layers of decision support. For example, we used Object Process Methodology (OPM) to repre-
sent not only system architectures but also specific decision-making problems, such as function 
or form specialization (see, for example, Figure 7.2). We introduced morphological matrices as a 
means to represent simple decision-making problems, such as concept selection (see, for example, 
Table 7.10). We also used Design Structure Matrices in Part 2, mostly to represent the interfaces 
between entities of a system. In Part 4, we focus on the other aspects of decision support: structur-
ing, simulating, and viewing.

We start this section by revisiting morphological matrices and DSMs, showing that these 
tools provide limited support to structuring, and no support to simulation and viewing. Then 
we introduce decision trees as a widely used decision support tool for decision making under 
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uncertainty, providing some support to the structuring and simulating layers. (Other widely used 
decision support tools, such as Markov Decision Processes, are not described in this section 
because they are seldom used for system architecture purposes.)

Morphological Matrix

The morphological matrix was introduced in Chapter 7 as a way to represent and organize 
decisions in a tabular format. The morphological matrix was first defined by Zwicky as a 
part of a method for studying the “total space of configurations” (morphologies) of a system. 
[22] Since then, the use of morphological matrices as a decision support tool has grown. [23] 
Figure 14.1 includes the morphological table for the Apollo example.

A morphological matrix lists the decisions and associated alternatives, as shown in 
Figure 14.1. An architecture of the system is chosen by selecting one alternative (labeled “alt”) 
from the row of alternatives listed to the right of each decision. Note that alternatives for dif-
ferent decisions do not have to come from the same column. For example, a configuration of 
the Apollo system could be: number of EOR = no (alt A), LOR = yes (alt B), command module 
crew = 2 (alt A), lunar module crew = 2 (alt C). An example of an expanded or more explicit 
form of the morphological matrix was given in Table 7.10.

In terms of decision support, the morphological matrix is a useful, straightforward method 
for representing decisions and alternatives. It is easy to construct and simple to understand. 
However, a morphological matrix does not represent metrics or constraints between decisions. 
Thus it does not provide tools for structuring a decision problem, simulating the outcome of 
decisions, or viewing the results.

Design Structure Matrix

As introduced in Chapter 4, a Design Structure Matrix is actually a form of decision support. The 
term Design Structure Matrix (DSM) was introduced in 1981 by Steward. [24] DSMs are now 
widely used in system architecture, product design, organizational design, and project management.

A DSM is a square matrix that represents the entities in a set and their bilateral relationships 
(see Table 4.4). These entities can be the parts of a product, the main functions of a system, or the 
people in a team, as demonstrated in the different examples throughout Part 2.

When a DSM is used to study the interconnections between decisions, each row and col-
umn corresponds to one of the N decisions, and an entry in the matrix indicates the connections, 
if any, that exist between the two decisions. The connections could be logical constraints or 
“reasonableness” constraints, or they could be connections through metrics.

For example, in Table 14.3, the letter a at the intersection between “EOR” and “earthLaunch” 
indicates that there is a connection between these two decisions as the result of the constraint 
labeled “a” in Table 14.1. Likewise, the letters b through f indicate the other five constraints. 
A blank entry in the intersection indicates that there is no direct connection between these deci-
sions imposed by the constraints.

A connection could mean that a metric depends on those two variables. For example, 
Table 14.4 shows the connection between the decisions given by the IMLEO metric. The entries 
in the matrix may have different letters, numbers, symbols, or colors to indicate different types 
of connections.
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In Table 14.5, the DSM of Table 14.3 has been partitioned and sorted so as to minimize 
interactions across blocks of decisions when possible. These blocks represent sets of decisions 
that should be made approximately simultaneously, because they have couplings with each 
other (for example, LOR with Lunar Module crew, Service Module crew, Service Module fuel, 
Lunar Module fuel). A partitioning procedure and example are given in Steward’s papers. More 
generally, clustering algorithms can be used for partitioning (see Appendix B).

A DSM provides information in the representing layer and the structuring layer of deci-
sion support. It represents the decisions (but not their alternatives) and their interconnections. 
In combination with partitioning or clustering algorithms, a DSM can be sorted to show which 
sets of decisions are tightly coupled and which sets are less tightly coupled or not coupled. 
This information informs both system decomposition and the timing of architectural deci-
sions, if the order of the decisions in the matrix is taken to represent the sequence in which 
they are made. [25]

Table 14.3  |  �DSM representing the interconnection of decisions by logical constraints  

for the Apollo case

    1 2 3 4 5 6 7 8 9

EOR 1   a              

earthLaunch 2 a                

LOR 3       b c   e   f

moonArrival 4     b            

moonDeparture 5     c            

cmCrew 6             d    

lmCrew 7     e     d      

smFuel 8                  

imFuel 9     f            

Table 14.4  |  �DSM representing the interconnection of decisions by the IMLEO metric  

in the Apollo case

    1 2 3 4 5 6 7 8 9

EOR 1                  

earthLaunch 2                  

LOR 3           I I I I

moonArrival 4                  

moonDeparture 5                  

cmCrew 6       I     I I I

lmCrew 7       I       I I

smFuel 8       I     I   I

imFuel 9       I     I I  
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Decision Trees

A decision tree is a well-known way to represent sequential, connected decisions. A decision 
tree can have three types of nodes: decision nodes, chance nodes, and leaf nodes. Decision nodes 
represent decisions, which are controllable by the decision maker and have a finite number of 
possible assignments represented by branches in the tree from that node. Chance nodes represent 
chance variables, which are not controllable by the decision maker and also have a finite number 
of possible assignments, which are also represented by branches. The endpoints, or “leaf” nodes, in 
the decision tree represent a complete assignment of all chance variables and decisions.

When these decisions are architectural decisions, a path through the decision tree essen-
tially defines an architecture. Thus, decision trees without chance nodes can be used to represent 
different architectures. Figure 14.4 shows a decision tree for the Apollo example concerning 
the five decisions related to the mission-mode. All nodes in this chart are decision nodes except 
for the final node in each branch, which is a leaf node. The first three of the constraints of 
Table 14.1 have also been implicitly included in the tree; for example, if earthLaunch = yes, 
there is no option of EOR = yes. This branch has been “pruned” from the tree by applying the 
logical constraint.

Note that this decision tree representation explicitly enumerates all the combinations of 
options (that is, all architectures), whereas the morphological matrix enumerated architectures 
only implicitly, by showing the alternatives for each decision. A limitation of decision trees is 
immediately visible in Figure 14.4: The size of a decision tree grows rapidly with the number of 
decisions and options, which results in huge trees, even for modest numbers of decisions.

In addition to representing architectures, decision trees can be used for evaluating archi-
tectures and selecting the best ones. This requires computing the metrics for each architec-
ture. Sometimes, it is possible to compute a metric incrementally while following a path 
in the tree. For example, the probability-of-success metric in the Apollo example can be 
computed in this way, because the contribution of each decision to the overall probability of 
success is given by Table 14.2, and the metric is constructed by multiplying the individual 
contributions together.

Table 14.5  |  �Sorted DSM of the interconnections of decisions by logical constraints  

for the Apollo case

    1 2 3 4 5 6 7 9 8

EOR 1   a              

earthLaunch 2 a                

LOR 3       b c   e f  

moonArrival 4     b            

moonDeparture 5     c            

cmCrew 6             d    

lmCrew 7     e     d      

imFuel 9     f            

smFuel 8                  
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In most cases however, there is coupling between decisions and metrics that is not additive 
or multiplicative, such as in the case of the IMLEO metric, a highly nonlinear function of the 
decision alternatives. In these cases, the metric for every leaf node (such as IMLEO) is usually 
computed after all the decision alternatives have been chosen. This approach may be impracti-
cal in cases where the number of architectures is very large, as we will see in Chapter 16.
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Figure 14.4   Simple decision tree with only decision nodes and leaf nodes 

(no chance nodes) for the Apollo mission-mode decisions.
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The leaves or architectures represented on decision trees are usually evaluated using 
a single metric. In such cases, it is customary to combine all relevant metrics (such as 
IMLEO and probability of success p) into a single metric representing the utility of an 
architecture for stakeholders [such as u = au (IMLEO) + (1 − a) u(p)]. The weight a and 
the individual utility functions u (IMLEO) and u(p) can be determined by means of multi-
attribute utility theory. [26]

In decision trees that don’t have chance nodes, choosing the best architecture is straightfor-
ward. It is more complicated in the presence of chance nodes, because leaf nodes no longer rep-
resent architectures but, rather, combinations of architectures and scenarios. It is thus necessary 
to choose the architecture that has the highest expected utility by working backwards from the 
leaf nodes. Let’s illustrate that with an example.

Assume that, instead of having a single value for the risk factor of each decision in Table 14.2, 
we had two values: an optimistic one and a pessimistic one. What is the best architecture given this 
uncertainty? Figure 14.5 shows the addition of the chance nodes corresponding to the last decision 
in the tree for the Apollo case (only a very small part of the tree is actually shown). Note that the 
actual tree has effectively doubled in size just through the addition of chance nodes corresponding 
to the moonDeparture decision. We compute the risk metric for all the new leaf nodes by traversing 
the tree from start to finish and multiplying all the risk factors together (the results are the Ri values 
in Figure 14.5). At this point, we can’t simply choose the leaf node with the lowest risk, because 
it does not represent an architecture; it represents an architecture for a given scenario—that is, a 
value of the risk factors. Instead, we need to assign probabilities to the branches of the chance 
nodes (such as 50%-50% everywhere), and compute the expected value of the risk metric at each 
chance node. Then, it makes sense to choose the Moon departure option with the lowest risk at 
each decision node. If we add chance nodes to all the other decisions, we can follow the same two 
steps. First, we compute the expected risk factor at each chance node, and then we pick the option 
with the best risk metric. We perform these steps for the LOR decision, then the moonArrival deci-
sion, and so forth, until all decisions have been made. This process yields the architecture that has 
best performance on average across all scenarios. This architecture is given by the combination of 
all the optimal decisions.

In short, the best architecture in a decision tree can be found by applying these two steps 
(expectation for chance nodes and maximization/minimization for decision nodes), starting from 
the leaf nodes and going backwards through the tree. [27]

Even though they are commonly used as general decision support tools, decision trees have 
several limitations that make them impractical to use in large system architecture problems. First, 
they require pre-computation of a payoff matrix containing the utilities of all the different options 
for each decision for all possible scenarios, which may be impractical for many problems. More 
generally, their size grows exponentially with the number of nodes in the problem.

Second, the method assumes that the payoffs and probabilities for a given decision are inde-
pendent from the rest of the decisions, which is often unrealistic. For example, consider that 
instead of modeling the uncertainty in the risk factors, we wish to model the uncertainty in the 
ratio between propellant mass and structure mass for any of the vehicles used in the architecture. 
This is a very important parameter of the model, because it can drive the IMLEO metric. However, 
this parameter does not directly affect any of the decisions the way the risk factor did. It affects 
the IMLEO metric through a complex mathematical relationship based on the mission-mode 
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decisions. This ratio is thus a “hidden” uncontrollable variable that affects multiple decisions. 
Modeling this in a decision tree is very difficult, or else it requires collapsing all the mission-
mode decisions into a single decision with 15 options (the number of leaf nodes in Figure 14.4).

In summary, decision trees provide a representation of the decision and can represent some 
kinds of structure, but they are of limited use in simulation.*

14.6 Decision Support for System Architecture

In the previous section, we discussed how three standard decision support tools can be applied to 
system architecture. At this stage, the reader may wonder whether there is anything special about 
system architecture decisions at all. How are architecture decisions different from other decisions?

Box 14.1 summarizes the characteristics of architectural decisions and metrics. The 
combination of these characteristics makes existing decision support tools very hard to apply to 
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*�Decision networks are a more general version of decision trees where the tree structure condition is relaxed to allow 
arbitrary topologies between decision nodes, chance nodes, and leaf nodes.
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Box 14.1  Insight:  Properties of Architectural Decisions and Metrics

The following properties characterize architectural decisions and metrics and differentiate them 
from other types of decisions.

•	 Modeling breadth versus depth.  Architecture decision support focuses on modeling 
breadth—that is, analyzing a large space of very different architectures at relatively low 
fidelity—whereas design decision support focuses on modeling depth—that is, analyzing 
a smaller number of designs with higher fidelity. Note that there is an inherent tradeoff 
between modeling breadth and modeling depth.

•	 Ambiguity.  Ambiguity is present in both design and architecture problems. However, ar-
chitecture problems suffer from larger and more varied sources of uncertainty (unknown 
outcomes due to random events) and ambiguity (inaccuracies or fuzziness in statements), 
simply because they occur early in the development process. This often makes the use of 
typical probabilistic techniques such as Monte Carlo simulation impractical or inadequate 
for system architecture. [28]

•	 Type of variable.  In decision analysis and optimization, decisions are classified into three 
types: continuous, discrete (those that can take only integer values), and categorical (those 
that can take any value from a discrete set of symbols representing abstractions). [29] 
Architectural decisions are most often categorical variables, are sometimes discrete variables, 
and are rarely continuous variables. The reason is that architectural decisions often consist 
of choosing among different entities of form or function, or among different mappings 
between function and form, which are inherently categorical in nature. We will have a deeper 
discussion about classes of architecture decisions and how to model them in Chapter 15. For 
example, the Apollo mission-mode decision is really about choosing which vehicles (form) 
perform which maneuvers (function). Conversely, design decisions tend to be continuous, are 
sometimes discrete, and are less likely to be categorical.

•	 Subjectivity.  Architecture problems often deal with some subjective metrics, which reflect 
the ability of the system to provide value to the stakeholders. Dealing with subjective met-
rics leads to the use of techniques such as multi-attribute utility theory or fuzzy sets. [30] 
Furthermore, subjectivity highlights the need for traceability. Architecture decision support 
should provide an explanation that justifies the assessments and can trace it back to expert 
knowledge or judgment if necessary.

•	 Type of objective functions.  Architecture problems sometimes use relatively simple equa-
tions in their objective functions, but often they also tend to resort to simple look-up tables and 
if-then structures, such as the Apollo risk metric. This is because of (1) the breadth of architec-
tures considered, which results in the need to apply different strategies to evaluate different 
types of architectures; (2) the low modeling fidelity, which leads to replacing complex compu-
tations with heuristics; and (3) the subjectivity of some metrics, which can be captured by rules 
that “set” some metric of interest for an architecture when a number of conditions are met.

•	 Coupling and emergence.  Architecture decision problems typically have a relatively low 
number of decisions compared to design problems. However, the dimensionality of the 
corresponding architecture space is often extremely large due to combinatorial explosion. 
What this means is that architecture variables are often extremely coupled. This is important 
because it precludes the utilization of some very powerful methods that exploit decouplings 
in the structure of decision problems (for example, the Markov property in dynamic pro-
gramming techniques).
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architecture decision support, and this has motivated the development of decision support tools 
for system architecture. [31]

In response to the characteristics listed in Box 14.1, architecture decision support systems 
are more interactive and less automatic, and they often employ tools from the fields of knowl-
edge reasoning and engineering (such as knowledge-based systems for incorporation of expert 
knowledge and explanation).

14.7 Summary

We began Part 4 by introducing a key idea: System architecting is a decision-making process, so 
we can benefit from decision support tools. We started off with an example based on the Apollo 
program to illustrate how we formulate a system architecting problem as a decision-making prob-
lem. We argued that the goal of these tools is to support—not replace—the system architect, given 
that system architecting requires creativity, holism, and heuristic approaches for which humans are 
much better suited than machines.

We described four fundamental aspects of decision support systems (representing, structur-
ing, simulating, and viewing), and we showed how Parts 2 and 3 have used decision support tools 
mostly for representing, but not for structuring, simulating, or viewing. We discussed three basic 
decision support tools that support representing and that provide some limited structuring, simu-
lating, and viewing capabilities. These are: morphological matrices, design structure matrices, 
and decision trees. We discussed in particular some of the limitations of these tools for system 
architecture.

This led us to ask about the differences between system architecture and other decision-
making processes. We concluded that although some of the standard decision support tools 
remain applicable, there is a need for tools that can deal with subjectivity, ambiguity, expert 
knowledge, and explanation. The next chapters will discuss some aspects of the tools we use 
for the four aspects of decision support in the context of system architecture. We will first 
take a deeper look at architectural tradespaces like the one in Figure 14.2. We will be working 
mostly in the structuring layer of the Design Activity, and we will see how to obtain useful 
knowledge about the system architecture by applying simple data processing techniques to 
tradespaces.
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